

© ITS, Inc. dean@JavaSchool.com

Web Container Components
Servlet – JSP – Tag Libraries

Servlet
– Standard Java class to handle an HTTP request and
response
– Mixes Java and HTML code

JSP
– Allows some separation of Java and HTML code
• Using JavaBeans as “backend” helpers
– JSP scriplets mix a lot of Java and HTML code

Tag libraries
– Define custom tags to remove Java code from JSP
pages

Web Application Development, Best Practices by Jeff Zhuk, JavaSchool.com

© ITS, Inc. dean@JavaSchool.com

Java Servlet and JSPs
Supported by all current application servers,

JSPs are automatically translated into Java servlet classes.

Java servlets and JSPs are collaborative mechanisms; they can be
used in together or in isolation.

In JSP, HTML code looks exactly as it would appear in a “.html”
file. The JSP interpreter automatically translates into servlet
compatible form.

JSPs introduced the notion of “tags”;
The custom or user-defined tags is also supported by the JSP
spec.

Java Standard Tag Library, Struts, BEA WebLogic , and more tag
library frameworks are available.

© ITS, Inc. dean@JavaSchool.com

Java Servlets serve HTTP
The Hypertext Transfer Protocol (HTTP), like HTML was developed by Tim
Berners-Lee and CERN in1989 with the main purpose to transfer arbitrary
data, and therefore is not restricted to just text, as its name might suggest.

HTTP is a stateless, connectionless protocol
HTTP 1.1 requests
– GET, POST, HEAD, PUT, TRACE, DELETE, OPTIONS, CONNECT

Although the HTTP 1.1 spec. contains 7 types of requests, many simple
HTTP servers only know the commands “GET”, “POST”, and “HEAD”

HTML forms have (hidden or visible) input fields and the ACTION field
Default request method is GET

<FORM ACTION="/directoryName/ServletClassName“ METHOD=“POST”>
Name: <INPUT TYPE="TEXT" NAME=”name"/>
Password: <INPUT TYPE=“PASSWORD" />
<CENTER><INPUT TYPE=”SUBMIT"/>GO!</CENTER>
</FORM>

© ITS, Inc. dean@JavaSchool.com

What is Servlet?
A servlet extends functionality of a web server
similar to an applet in a browser.

– Servlet is a piece of Java code
– Servlet is loaded by a Web server to handle client requests
– Servlet’s code stays in memory when the request terminates
– Servlet can retain its connection across requests
– Servlet can chain a client request to another Servlet (servlet chaining)
– Servlets usually:

1) Accept input data
2) Run or delegate business logics
3) Dynamically generate or just transfer HTML response page

For example, when a browser sends a request to the web server, the server
may forward the request to a servlet that can process the request and
construct a response, usually an HTML page, that is returned to the browser.

© ITS, Inc. dean@JavaSchool.com

Servlet Code Planning
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AbstractServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

 //Get HTTP headers, cookies, session and form data from the request
 //Apply business logic, e.g., user authorization
 //Fill outgoing "response" to specify the HTTP response
 //including status code, headers, cookies, session data,
 // send output HTML page back to a client

 }
}

© ITS, Inc. dean@JavaSchool.com

Servlet Code Example
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloServlet extends javax.servlet.http.HttpServlet {

 public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws javax.servlet.ServletException, java.io.IOException {

 String html = ”<HTML>\n" +
"<HEAD><TITLE>HTML Title</TITLE></HEAD>\n" +
"<BODY>\n" +
"<H1> This is just an example</H1>\n" +
"</BODY></HTML>";

 response.getWriter().println(html);
 }
}

© ITS, Inc. dean@JavaSchool.com

Servlet Best Practices
New services can be added run time as new JSPs/ASPs or Java™/.NET classes
//serviceName and serviceDetails are to be populated
// by servlet doPost() , doGet() or service() methods

String serviceName = request.getParameter(“service”);
Hashtable serviceDetails = getServiceDetails();

Service service = // known or new service
(Service) Class.forName(serviceName).newInstance();

String content = service.run(serviceDetails);
response.setContentType(“text/html"); // “application/xsl” and etc.
response.getWriter().println(content);

XML based Service API allows us to describe any existing and future service
<ServiceRequest service=“Mail” action=“get”>
 <Param><paramName1=…></Param>
</ServiceRequest>

We can find both Dispatcher and Factory patterns in this example. This approach makes it
possible to create a unified API for client – server communications. Any service (including
new, unknown design time services) can be requested by a client without code change.

© ITS, Inc. dean@JavaSchool.com

Servlet’s Initialization and “web.xml”
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp">
 <display-name>JavaSchoolApp</display-name>
 <context-param>
 <param-name>sqlLocation</param-name>
 <param-value>sql</param-value>
 <description>Location of SQL statements relative to WEB-INF</description>
 </context-param>
 <!-- Initialization code is in the ITSServletContextListener.java -- >
<listener>
 <listener-class>com.its.util.ITSServletContextListener</listener-class>
</listener>
<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>WEB-INF/struts-config.xml</param-value>
 </init-param>
</servlet>

© ITS, Inc. dean@JavaSchool.com

Servlets Summary
Servlet-Centric Architecture

Client(s)

Web
Browser

Http
Post/Get

Web Tier

Servlets

execute
business
logic,

provide data
access, and

Create
HTML
pages Database

Submit
Form

Request

Display
Page

Response

Java code in servlets mix together business and presentation layers

Other
Enterprise
Applications

© ITS, Inc. dean@JavaSchool.com

Servlet Summary

1. A servlet extends functionality of a web server
similar to an applet in a browser.

 2. Servlets usually:
1.

 2.
 3.

© ITS, Inc. dean@JavaSchool.com

Servlet Summary

1. A servlet extends functionality of a web server
similar to an applet in a browser.

 2. Servlets usually:
1) Accept input data
2) Run or delegate business logics
3) Dynamically generate HTML response page

3. In Servlet-based architecture there is a mix …

© ITS, Inc. dean@JavaSchool.com

JSP Concepts
JSP, similar to Microsoft ASP Technology, simplifies web design.
Web Designers who understand HTML can create most of the page
using HTML tags and leave the rest for programmers

• As compared to ASP, JSP is better language for dynamic part
– Portable to multiple servers and operating systems
• As compared to pure servlets, JSP is more convenient to create HTML
– Can use standard tools (e. g., HomeSite, DreamWeaver MX)
– Model / view / controller paradigm
– JSP programmers still need to know servlet programming

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">
<HTML>
<HEAD><TITLE>Simple date with JSP</TITLE></HEAD>
<BODY>
Today’s date is <%= new java.util.Date() %>.
<P>
Regular HTML for rest of on-line store’s Web page
</BODY>
</HTML>

© ITS, Inc. dean@JavaSchool.com

MVC Model 1: JSP-to-JSP
Page-Centric Architecture

Client(s)

Web
Browser

Http
Post/Get

Web Tier

JSPs

with

to execute
business
logic and

provide data
access

Database

Submit
Form

Request

Display
Page

Response

Interrelated JSP pages provide presentation, control, and business processing
with scriplets and embedded Java beans encouraging “spaghetti” code in JSP.

Embedded
Java Beans

Other
Enterprise
Applications

© ITS, Inc. dean@JavaSchool.com

JSP Custom Tag Library
• What is Tag Library?

• • Standard actions
• – In JSP, actions are elements that can create and access
• programming language objects and affect output
• – JSP spec 1.1 defines standard actions that can be used

to interact with any Bean
• • useBean, setProperty, getProperty, include, forward,
• param, plugin

• – JSP 1.1 and above supports development of reusable
modules called custom actions

• – A custom action is invoked by using a custom tag in a
JSP page

• – A tag library is a collection of custom tags

© ITS, Inc. dean@JavaSchool.com

MVC Model 2 - Better Separation of
Business and Presentation Layers

Client(s)

Web
Browser

Http
Post/Get

Web Tier

JSPs are

forming

The View
Database

Submit
Form

Request

Display
Page

Response

Servlet and JSP work together. Servlet and related classes, like Struts Action,
control application logic and interact with services while JSP forms the presentation

Model
Java Beans

Service Layer

Other
Enterprise
Applications

Web Tier

Servlet

Controller

© ITS, Inc. dean@JavaSchool.com

Custom Tag Library Examples

• JSTL

• Struts

• WebLogic

• Displaytag

• Your own custom tag library

© ITS, Inc. dean@JavaSchool.com

JSP/Tags Summary/Repetition

• JSP provides better ….

• Custom Tags ….

© ITS, Inc. dean@JavaSchool.com

Web Container Components
Servlet – JSP – Practice

Open Dynamic Web Application Project in Eclipse

Create JSP - index.jsp
Remember what is JSP?
– Allows some separation of Java and HTML code
• Using JavaBeans as “backend” helpers
– JSP scriplets provide access to Java in HTML

Create Servlet – train.ServletExample
Remember what is servlet?
– Standard Java class to handle an HTTP request and
response
– Often mixes Java and HTML code

Web Application Development, Best Practices by Jeff Zhuk, JavaSchool.com

© ITS, Inc. dean@JavaSchool.com

MVC Model 1: JSP-to-JSP
Page-Centric Architecture

Client(s)

Web
Browser

Http
Post/Get

Web Tier

JSPs

with

to execute
business
logic and

provide data
access

Database

Submit
Form

Request

Display
Page

Response

Interrelated JSP pages provide presentation, control, and business processing
with scriplets and embedded Java beans encouraging “spaghetti” code in JSP.

Embedded
Java Beans

Other
Enterprise
Applications

© ITS, Inc. dean@JavaSchool.com

JSP/Tags Summary/Repetition

• JSP provides better ….

• Custom Tags ….

• Practice ...

© ITS, Inc. dean@JavaSchool.com

Open NEW Dynamic Web Application
Project in Eclipse

NEW – Project -
Web – Dynamic Web Project

Project name: webTrain

© ITS, Inc. dean@JavaSchool.com

Create index.jsp
WebContent right mouse click – NEW JSP file – index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">
<HTML>
<HEAD><TITLE>Simple date with JSP</TITLE></HEAD>
<BODY>
Today’s date is <%= new java.util.Date() %>.
<P>
Regular HTML for rest of on-line store’s Web page
</BODY>
</HTML>

© ITS, Inc. dean@JavaSchool.com

Deploy Your Application

• Find the webTrain directory in the Eclipse workspace
• Copy the WebContent directory to c:/uop/apps
Zip the content of the folder (without the folder itself) and

rename the compressed file into “yourName.war”

Email this file to me and I will Copy the file “yourName.war” to the
deployment directory, for example, Tomcat/Webapps

Point the Browser to the following URLs to test your application:
 http://yourServer:8080/yourName/index.jsp

© ITS, Inc. dean@JavaSchool.com

Servlet Code Planning
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AbstractServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

 //Get HTTP headers, cookies, session and form data from the request
 //Apply business logic, e.g., user authorization
 //Fill outgoing "response" to specify the HTTP response
 //including status code, headers, cookies, session data,
 // send output HTML page back to a client

 }
}

© ITS, Inc. dean@JavaSchool.com

Prepare Eclipse to Servlets
1.Provide the Servlet Library

Place servlet-api.jar in the Eclipse - WEB-INF/lib

Right mouse click on the jar – Add to Build Path

2. Create the train package under the src and
create the ServletExample class in this package

© ITS, Inc. dean@JavaSchool.com

Servlet’s Initialization and “web.xml”
<?xml version="1.0" encoding="UTF-8"?>
... Keep existing code generated by Ecllipse... and add after the <web-app
<web-app id="WebApp">
 <display-name>yourName</display-name>
 <context-param>
 <param-name>dsName</param-name>
 <param-value>jeffcoTrain</param-value>
 </context-param>

 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>train.ServletExample</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
</web-app>

© ITS, Inc. dean@JavaSchool.com

Servlets Summary
Servlet-Centric Architecture

Client(s)

Web
Browser

Http
Post/Get

Web Tier

Servlets

execute
business
logic,

provide data
access, and

Create
HTML
pages Database

Submit
Form

Request

Display
Page

Response

Java code in servlets mix together business and presentation layers

Other
Enterprise
Applications

© ITS, Inc. dean@JavaSchool.com

Servlet Summary

1. A servlet extends functionality of a web server
similar to an applet in a browser.

 2. Servlets usually:
1.

 2.
 3.

© ITS, Inc. dean@JavaSchool.com

Servlet Summary

1. A servlet extends functionality of a web server
similar to an applet in a browser.

 2. Servlets usually:
1) Accept input data
2) Run or delegate business logics
3) Dynamically generate HTML response page

3. In Servlet-based architecture there is a mix …

© ITS, Inc. dean@JavaSchool.com

Deploy Your Application
• Make sure that your code was compiled with no read spots
• Find the webTrain directory in the Eclipse workspace
• Copy build/classes into WebContent/WEB-INFO
• Copy the WebContent directory to c:/uop/apps
• Zip the content of the folder (without the folder itself) and

rename the compressed file into “yourName.war”
• Deploy the file “yourName.war” to the deployment directory,

for example, Tomcat/Webapps

Point the Browser to the following URLs to test your application:
 http://yourServer:8080/yourName/index.jsp
 http://yourServer:8080/yourName/ServletExample.do

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

